
Jumping Frogs - Challenge #2

Christian Woll

February 2017

1 Abstract

Here is presented a procedure for solving an arbitrary sequence of lily pads
(here called a ”pond”) in which each lily pad has a single frog or is water-logged
(which is the same as being empty). The solution is reached here by appending
more single-frog lily pads to the right of the pond. By symmetry the frogs could
be added to the left too.

Thus the problem is solvable for all water-logged configurations and an upper
bound is implicitly set by the given procedures.

2 Notation

Frogs will be presented as lists of integers (within brackets where clarity is
needed). For example, (207[15]0) is a 2-frog stack, an empty lily pad, a 7-frog
stack, a 15-frog stack, and another empty lily pad.

For generalization, variables will be used as exponents to represent consec-
utive stacks of the same size and in stack sizes. For example, in (33[n − 2]0k),
the term [n− 2] would be read as a stack of n− 2 frogs and the term 0k would
be read as k consecutive empty lily pads.

Water-logged lily pads will be represented with X’s and have the same be-
havior as an empty lily pad. The ∗ character will represent a lily pad of unknown
value.

Jumps are shown as follows:
for ai = k and ai+k > 0

(a1...ai−1kai+1...ai+k...an)→ (a1...0...[ai+k + k]...an)

and by symmetry:

(a1...ai−k...ai−1kai+1...an)→ (a1...[ai−k + k]...0...an)

1



That is to say, a stack of k frogs can jump k spaces to the right or left.
Some examples:

(1111)→ (0211)→ (0202)→ (0400)

(1nn) = (11n−1n)→ ([n+ 1]1n−10) = ([n+ 1]11n−20)→ ([n+ 2]01n−20)

(1 ∗ ∗1111)→ (1 ∗ ∗1120)→ (1 ∗ ∗3100)→ (4 ∗ ∗0100)→ (0 ∗ ∗0500)

3 Some Lemmas

Lemma 1.1: (1n)→ (n0n−1) for n ≥ 1
Convert n consecutive single frogs into a stack of n frogs followed by n − 1
consecutive empty lily pads.

(1n)→ (1...1021...1)→ (1...13001...1)→ (1...100041...1)→ ...

...→ (1...10k−1k1...1)→ ...→ (n0n−1)

Note: 0n−1 appears in the derivation. Thus this procedure requires n ≥ 1.

Lemma 1.2: (1n)→ (0n−1n) for n ≥ 1
Apply symmetry to the result of Lemma 1.1a

Lemma 2.1: (1 ∗n 1n+5)→ (0 ∗n 0n+211[n+ 4]) for n ≥ 2
-Procedure to rescue a single frog n lily pads away.
-Appends n+ 5 single-frog lily pads to the right:

(1 ∗n 1n+5) = (1 ∗n 111n−11111)
1.2−−→ (1 ∗n 110n−2[n− 1]1111)→

→ (1 ∗n 110n−2n0111)→ (1 ∗n [n+ 1]10n−200111) = (1 ∗n [n+ 1]10n111)→

→ ([n+ 2] ∗n 010n111)→ (0 ∗n 0[n+ 3]0n111)→ (0 ∗n 0n+211[n+ 4])

Note: 0n−2 appears in the derivation. Thus this procedure requires n ≥ 2.

Lemma 2.2: (1 ∗n 1n+5)→ (0 ∗n 0n+4[n+ 6]) for n ≥ 2
Follows immediately from Lemma 2.1:

(1 ∗n 1n+5)
2.1−−→ (0 ∗n 0n+211[n+ 4])→ (0 ∗n 0n+220[n+ 4])→

→ (0 ∗n 0n+200[n+ 6]) = (0 ∗n 0n+4[n+ 6])

Lemma 3.1: (1 ∗n m1m+n+6) → (0 ∗n 0m+n+6[2m + n + 7]) for m ≥ 16,
n ≥ 1
-Procedure to rescue a single frog n lily pads away when there is a stack of frogs

2



on the right end of the pond.
-Appends m+ n+ 6 single-frog lily pads to the right:

(1 ∗n m1m+n+6) =

= (1 ∗n m1n+61m)
2.1−−→

2.1−−→ (0 ∗n m0n+311[n+ 5]1m)→

→ (0 ∗n m0n+310[n+ 6]1m)→

→ (0 ∗n [m+ n+ 6]0n+31001m) =

= (0 ∗n [m+ n+ 6]0n+31001m−11)→

→ (0 ∗n 00n+31001m−1[m+ n+ 7]) =

= (0 ∗n 0n+4100171m−8[m+ n+ 7])
2.2−−→

2.2−−→ (0 ∗n 0n+40000681m−8[m+ n+ 7]) =

= (0 ∗n 0n+1381m−1517[m+ n+ 7])
1.1−−→

1.1−−→ (0 ∗n 0n+1381m−15706[m+ n+ 7])
1.2−−→

1.2−−→ (0 ∗n 0n+1380m−16[m− 15]706[m+ n+ 7])→

→ (0 ∗n 0n+13[m− 7]0m−160706[m+ n+ 7])→

→ (0 ∗n 0n+13[m− 7]0m−160006[m+ n+ 14]) =

= (0 ∗n 0n+13[m− 7]0m−8[m+ n+ 14])→

→ (0 ∗n 0n+1300m−8[m+ n+ 14 + (m− 7)]) =

= (0 ∗n 0m+n+6[2m+ n+ 7])

Note: 0m−16 appears in the derivation. Thus this procedure requires m ≥ 16.

4 Water-logged Rescue Procedure

Consider an arbitrary sequence of water-logged lily pads and single-frog lily
pads, say p = {X, 1}∗. We write p in the form

p = (Xak1Xak−11Xak−21...1Xa21Xa11Xa0)

where X is a water-logged lily pad and ai ≥ 0 for all i.

Frog #1 Rescue
Case a0 = 0: (Xak1Xak−11...1Xa11)
No frogs are appended.

Case a0 = 1: (Xak1Xak−11...1Xa11X)

3



12 frogs are appended:

(Xak1Xak−11...1Xa11X112)→ (Xak1Xak−11...1Xa10X011[13])

Procedure is as follows:

(1X112) = (1X111111111111)→ (1X111112011111)→

→ (1X111103011111)→ (1X114100011111)→ (5X110100011111)→
→ (0X110600011111)→ (0X020600011111)→ (0X000800011111)→

(0X000000011119)
1.1−−→ (0X000000040009)→ (0X011[13])

Case a0 ≥ 2: (Xak1Xak−11...1Xa11Xa0)
a0 + 5 frogs are appended.

(Xak1Xak−11...1Xa11Xa01a0+5)→ (Xak1Xak−11...1Xa10Xa00a0+4[a0 + 6])

Frog #2-k Rescue
Regarding the first frog, all cases leave the pond in the following state:

(Xak1Xak−11...1Xa21 ∗n m)

where m ≥ 1, n ≥ 0, and ∗n = Xa10Xa0(0...0?).
But to apply Lemma 3.1 we need m ≥ 16 and n ≥ 1. These constraints can

be met by repeatedly appending m frogs and jumping the m stack to the right.
Procedure is as follows:

(∗nm1m) = (∗nm1m−11)→ (∗n01m−1[m+ 1])
1.1−−→ (∗n0[m− 1]0m−2[m+ 1])→

→ (∗n000m−2[m+ 1 + (m− 1)] = (∗n0m[2m]) = (∗n+m[2m]) = (∗n
′
m′)

where m′ = 2m and n′ = n+m
Worst case is 5 applications of the former procedure when m = 1.
Apply Lemma 3.1 as follows:

(Xak1Xak−11...1Xa21 ∗n m1m+n+6)
3.1−−→

3.1−−→ (Xak1Xak−11...1Xa20 ∗n 0m+n+6[2m+ n+ 7])

From here we repeatedly apply lemma 3.1; rescuing another frog from the
water-logged area each time.

For (Xak1Xak−11...1Xai0 ∗n′ 0m
′+n′+6[2m′ + n′ + 7])

choose ∗n = Xai0 ∗n′ 0m
′+n′+6 and m = [2m′ + n′ + 7]. Apply the lemma as

follows:

Xak1Xak−11...1 ∗n m)
3.1−−→ (Xak1Xak−11...1Xai+10 ∗n 0m+n+6[2m+ n+ 7])

After applying the lemma k − 1 times in total, the pond will be of the form
Xak ∗n m where the ∗n is composed of water-logged and empty lily pads. m is
the only frog stack and the configuration has been solved.

4



5 On Bounds

The recurrence relation between m and n is[
m
n

]
rescue#i−−−−−→

[
2m+ n+ 7

m+ 2n+ 7 + ai−1

]
Upon each ”rescue”, m+ n+ 6 frogs are appended. Thus the upper bound for
the minimum number of frogs appended is O(3#frogs).

This should be easily beatable for any water-logged configuration. But it
serves to show that all configurations are solvable.

The tight bound is probably Θ((1 + ε)#frogs)

5


